Inorder Traversal (Practice)

Follow the below steps to solve the problem:

  • Traverse the left subtree, i.e., call Inorder(left-subtree)
  • Visit the root
  • Traverse the right subtree, i.e., call Inorder(right-subtree)

Below is the implementation of the above algorithm:

C++




// C++ program for different tree traversals
#include <bits/stdc++.h>
using namespace std;
 
/* A binary tree node has data, pointer to left child
and a pointer to right child */
struct Node {
    int data;
    struct Node *left, *right;
    Node(int data)
    {
        this->data = data;
        left = right = NULL;
    }
};
 
/* Given a binary tree, print its nodes in inorder*/
void printInorder(struct Node* node)
{
    if (node == NULL)
        return;
 
    /* first recur on left child */
    printInorder(node->left);
 
    /* then print the data of node */
    cout << node->data << " ";
 
    /* now recur on right child */
    printInorder(node->right);
}
 
/* Driver code*/
int main()
{
    struct Node* root = new Node(1);
    root->left = new Node(2);
    root->right = new Node(3);
    root->left->left = new Node(4);
    root->left->right = new Node(5);
 
    cout << "\nInorder traversal of binary tree is \n";
    printInorder(root);
 
    return 0;
}


C




// C program for different tree traversals
#include <stdio.h>
#include <stdlib.h>
 
/* A binary tree node has data, pointer to left child
   and a pointer to right child */
struct node {
    int data;
    struct node* left;
    struct node* right;
};
 
/* Helper function that allocates a new node with the
   given data and NULL left and right pointers. */
struct node* newNode(int data)
{
    struct node* node
        = (struct node*)malloc(sizeof(struct node));
    node->data = data;
    node->left = NULL;
    node->right = NULL;
 
    return (node);
}
 
/* Given a binary tree, print its nodes in inorder*/
void printInorder(struct node* node)
{
    if (node == NULL)
        return;
 
    /* first recur on left child */
    printInorder(node->left);
 
    /* then print the data of node */
    printf("%d ", node->data);
 
    /* now recur on right child */
    printInorder(node->right);
}
 
/* Driver code*/
int main()
{
    struct node* root = newNode(1);
    root->left = newNode(2);
    root->right = newNode(3);
    root->left->left = newNode(4);
    root->left->right = newNode(5);
 
    printf("\nInorder traversal of binary tree is \n");
    printInorder(root);
 
    getchar();
    return 0;
}


Java




// Java program for different tree traversals
 
/* Class containing left and right child of current
   node and key value*/
class Node {
    int key;
    Node left, right;
 
    public Node(int item)
    {
        key = item;
        left = right = null;
    }
}
 
class BinaryTree {
    // Root of Binary Tree
    Node root;
 
    BinaryTree() { root = null; }
 
    /* Given a binary tree, print its nodes in inorder*/
    void printInorder(Node node)
    {
        if (node == null)
            return;
 
        /* first recur on left child */
        printInorder(node.left);
 
        /* then print the data of node */
        System.out.print(node.key + " ");
 
        /* now recur on right child */
        printInorder(node.right);
    }
 
    // Wrappers over above recursive functions
    void printInorder() { printInorder(root); }
 
    // Driver code
    public static void main(String[] args)
    {
        BinaryTree tree = new BinaryTree();
        tree.root = new Node(1);
        tree.root.left = new Node(2);
        tree.root.right = new Node(3);
        tree.root.left.left = new Node(4);
        tree.root.left.right = new Node(5);
 
        System.out.println(
            "\nInorder traversal of binary tree is ");
        tree.printInorder();
    }
}


Python




# Python3 program to for tree traversals
 
# A class that represents an individual node in a
# Binary Tree
 
 
class Node:
    def __init__(self, key):
        self.left = None
        self.right = None
        self.val = key
 
 
# A function to do inorder tree traversal
def printInorder(root):
 
    if root:
 
        # First recur on left child
        printInorder(root.left)
 
        # then print the data of node
        print(root.val),
 
        # now recur on right child
        printInorder(root.right)
 
 
# Driver code
root = Node(1)
root.left = Node(2)
root.right = Node(3)
root.left.left = Node(4)
root.left.right = Node(5)
 
print "\nInorder traversal of binary tree is"
printInorder(root)


C#




// C# program for different tree traversals
using System;
 
/* Class containing left and right child of current
node and key value*/
class Node {
    public int key;
    public Node left, right;
 
    public Node(int item)
    {
        key = item;
        left = right = null;
    }
}
 
public class BinaryTree {
    // Root of Binary Tree
    Node root;
 
    BinaryTree() { root = null; }
 
    /* Given a binary tree, print its nodes in inorder*/
    void printInorder(Node node)
    {
        if (node == null)
            return;
 
        /* first recur on left child */
        printInorder(node.left);
 
        /* then print the data of node */
        Console.Write(node.key + " ");
 
        /* now recur on right child */
        printInorder(node.right);
    }
 
    // Wrappers over above recursive functions
    void printInorder() { printInorder(root); }
 
    // Driver code
    public static void Main(String[] args)
    {
        BinaryTree tree = new BinaryTree();
        tree.root = new Node(1);
        tree.root.left = new Node(2);
        tree.root.right = new Node(3);
        tree.root.left.left = new Node(4);
        tree.root.left.right = new Node(5);
 
        Console.WriteLine(
            "\nInorder traversal of binary tree is ");
        tree.printInorder();
    }
}
 
// This code is contributed by PrinciRaj1992


Javascript




<script>
// javascript program for different tree traversals
 
/* Class containing left and right child of current
   node and key value*/
class Node {
    constructor(val) {
        this.key = val;
        this.left = null;
        this.right = null;
    }
}
     
 
    /* Given a binary tree, print its nodes in inorder */
     function printInorder(node) {
        if (node == null)
            return;
 
        /* first recur on left child */
        printInorder(node.left);
 
        /* then print the data of node */
        document.write(node.key + " ");
 
        /* now recur on right child */
        printInorder(node.right);
    }
 
    // Driver method
 
        var root = new Node(1);
        root.left = new Node(2);
        root.right = new Node(3);
        root.left.left = new Node(4);
        root.left.right = new Node(5);
 
        document.write("<br/>Inorder traversal of binary tree is <br/>");
        printInorder(root);
 
// This code is contributed by umadevi9616
</script>


Output

Inorder traversal of binary tree is 
4 2 5 1 3 

Time Complexity: O(N)
Auxiliary Space: O(log N)

Uses of Inorder traversal:

In the case of binary search trees (BST), Inorder traversal gives nodes in non-decreasing order. To get nodes of BST in non-increasing order, a variation of Inorder traversal where Inorder traversal is reversed can be used

DFS traversal of a Tree

Given a Binary tree, Traverse it using DFS using recursion.

Unlike linear data structures (Array, Linked List, Queues, Stacks, etc) which have only one logical way to traverse them, trees can be traversed in different ways.

Generally, there are 2 widely used ways for traversing trees:

  • DFS or Depth-First Search
  • BFS or Breadth-First Search

Similar Reads

What is a Depth-first search?

DFS (Depth-first search) is a technique used for traversing trees or graphs. Here backtracking is used for traversal. In this traversal first, the deepest node is visited and then backtracks to its parent node if no sibling of that node exists...

DFS Traversal of a Graph vs Tree:

In the graph, there might be cycles and disconnectivity. Unlike the graph, the tree does not contain a cycle and are always connected. So DFS of a tree is relatively easier. We can simply begin from a node, then traverse its adjacent (or children) without caring about cycles. And if we begin from a single node (root), and traverse this way, it is guaranteed that we traverse the whole tree as there is no dis-connectivity,...

1. Inorder Traversal (Practice):

Follow the below steps to solve the problem:...

2. Preorder Traversal (Practice):

...

3. Postorder Traversal (Practice):

...

Implementing all traversals using DFS:

...