Modular multiplicative inverse when M is prime

If we know M is prime, then we can also use Fermat’s little theorem to find the inverse. 

aM-1 ? 1 (mod M)

If we multiply both sides with a-1, we get 

a-1 ? a M-2 (mod M)

Below is the implementation of the above approach:

C++




// C++ program to find modular inverse of A under modulo M
// This program works only if M is prime.
#include <bits/stdc++.h>
using namespace std;
 
// To find GCD of a and b
int gcd(int a, int b);
 
// To compute x raised to power y under modulo M
int power(int x, unsigned int y, unsigned int M);
 
// Function to find modular inverse of a under modulo M
// Assumption: M is prime
void modInverse(int A, int M)
{
    int g = gcd(A, M);
    if (g != 1)
        cout << "Inverse doesn't exist";
    else {
        // If a and m are relatively prime, then modulo
        // inverse is a^(m-2) mode m
        cout << "Modular multiplicative inverse is "
             << power(A, M - 2, M);
    }
}
 
// To compute x^y under modulo m
int power(int x, unsigned int y, unsigned int M)
{
    if (y == 0)
        return 1;
 
    int p = power(x, y / 2, M) % M;
    p = (p * p) % M;
 
    return (y % 2 == 0) ? p : (x * p) % M;
}
 
// Function to return gcd of a and b
int gcd(int a, int b)
{
    if (a == 0)
        return b;
    return gcd(b % a, a);
}
 
// Driver code
int main()
{
    int A = 3, M = 11;
 
    // Function call
    modInverse(A, M);
    return 0;
}


Java




// Java program to find modular
// inverse of A under modulo M
// This program works only if
// M is prime.
import java.io.*;
 
class GFG {
 
    // Function to find modular inverse of a
    // under modulo M Assumption: M is prime
    static void modInverse(int A, int M)
    {
        int g = gcd(A, M);
        if (g != 1)
            System.out.println("Inverse doesn't exist");
        else {
            // If a and m are relatively prime, then modulo
            // inverse is a^(m-2) mode m
            System.out.println(
                "Modular multiplicative inverse is "
                + power(A, M - 2, M));
        }
    }
 
    static int power(int x, int y, int M)
    {
        if (y == 0)
            return 1;
        int p = power(x, y / 2, M) % M;
        p = (int)((p * (long)p) % M);
        if (y % 2 == 0)
            return p;
        else
            return (int)((x * (long)p) % M);
    }
 
    // Function to return gcd of a and b
    static int gcd(int a, int b)
    {
        if (a == 0)
            return b;
        return gcd(b % a, a);
    }
 
    // Driver Code
    public static void main(String args[])
    {
        int A = 3, M = 11;
 
        // Function call
        modInverse(A, M);
    }
}
 
// This code is contributed by Nikita Tiwari.


Python3




# Python3 program to find modular
# inverse of A under modulo M
 
# This program works only if M is prime.
 
# Function to find modular
# inverse of A under modulo M
# Assumption: M is prime
 
 
def modInverse(A, M):
 
    g = gcd(A, M)
 
    if (g != 1):
        print("Inverse doesn't exist")
 
    else:
 
        # If A and M are relatively prime,
        # then modulo inverse is A^(M-2) mod M
        print("Modular multiplicative inverse is ",
              power(A, M - 2, M))
 
# To compute x^y under modulo M
 
 
def power(x, y, M):
 
    if (y == 0):
        return 1
 
    p = power(x, y // 2, M) % M
    p = (p * p) % M
 
    if(y % 2 == 0):
        return p
    else:
        return ((x * p) % M)
 
# Function to return gcd of a and b
 
 
def gcd(a, b):
    if (a == 0):
        return b
 
    return gcd(b % a, a)
 
 
# Driver Code
if __name__ == "__main__":
    A = 3
    M = 11
 
    # Function call
    modInverse(A, M)
 
 
# This code is contributed by Nikita Tiwari.


C#




// C# program to find modular
// inverse of a under modulo M
// This program works only if
// M is prime.
using System;
class GFG {
 
    // Function to find modular
    // inverse of A under modulo
    // M Assumption: M is prime
    static void modInverse(int A, int M)
    {
        int g = gcd(A, M);
        if (g != 1)
            Console.Write("Inverse doesn't exist");
        else {
            // If A and M are relatively
            // prime, then modulo inverse
            // is A^(M-2) mod M
            Console.Write(
                "Modular multiplicative inverse is "
                + power(A, M - 2, M));
        }
    }
 
    // To compute x^y under
    // modulo M
    static int power(int x, int y, int M)
    {
        if (y == 0)
            return 1;
 
        int p = power(x, y / 2, M) % M;
        p = (p * p) % M;
 
        if (y % 2 == 0)
            return p;
        else
            return (x * p) % M;
    }
 
    // Function to return
    // gcd of a and b
    static int gcd(int a, int b)
    {
        if (a == 0)
            return b;
        return gcd(b % a, a);
    }
 
    // Driver Code
    public static void Main()
    {
        int A = 3, M = 11;
 
        // Function call
        modInverse(A, M);
    }
}
 
// This code is contributed by nitin mittal.


Javascript




<script>
// Javascript program to find modular inverse of a under modulo m
// This program works only if m is prime.
 
// Function to find modular inverse of a under modulo m
// Assumption: m is prime
function modInverse(a, m)
{
    let g = gcd(a, m);
    if (g != 1)
        document.write("Inverse doesn't exist");
    else
    {
        // If a and m are relatively prime, then modulo
        // inverse is a^(m-2) mode m
        document.write("Modular multiplicative inverse is "
             + power(a, m - 2, m));
    }
}
 
// To compute x^y under modulo m
function power(x, y, m)
{
    if (y == 0)
        return 1;
    let p = power(x, parseInt(y / 2), m) % m;
    p = (p * p) % m;
 
    return (y % 2 == 0) ? p : (x * p) % m;
}
 
// Function to return gcd of a and b
function gcd(a, b)
{
    if (a == 0)
        return b;
    return gcd(b % a, a);
}
 
// Driver code
let a = 3, m = 11;
 
// Function call
modInverse(a, m);
 
// This code is contributed by subham348.
</script>


PHP




<?php
// PHP program to find modular
// inverse of A under modulo M
// This program works only if M
// is prime.
 
// Function to find modular
// inverse of A under modulo
// M Assumption: M is prime
function modInverse( $A, $M)
{
    $g = gcd($A, $M);
    if ($g != 1)
        echo "Inverse doesn't exist";
    else
    {
         
        // If A and M are relatively
        // prime, then modulo inverse
        // is A^(M-2) mod M
        echo "Modular multiplicative inverse is "
                        , power($A, $M - 2, $M);
    }
}
 
// To compute x^y under modulo m
function power( $x, $y, $M)
{
    if ($y == 0)
        return 1;
    $p = power($x, $y / 2, $M) % $M;
    $p = ($p * $p) % $M;
 
    return ($y % 2 == 0)? $p : ($x * $p) % $M;
}
 
// Function to return gcd of a and b
function gcd($a, $b)
{
    if ($a == 0)
        return $b;
    return gcd($b % $a, $a);
}
 
// Driver Code
$A = 3;
$M = 11;
 
// Function call
modInverse($A, $M);
     
// This code is contributed by anuj_67.
?>


Output

Modular multiplicative inverse is 4

Time Complexity: O(log M)
Auxiliary Space: O(log M), because of the internal recursion stack.

Applications: 
Computation of the modular multiplicative inverse is an essential step in RSA public-key encryption method.

This article is contributed by Ankur.



Modular multiplicative inverse

Given two integers A and M, find the modular multiplicative inverse of A under modulo M.
The modular multiplicative inverse is an integer X such that:

A X ? 1 (mod M)   

Note: The value of X should be in the range {1, 2, … M-1}, i.e., in the range of integer modulo M. ( Note that X cannot be 0 as A*0 mod M will never be 1). The multiplicative inverse of “A modulo M” exists if and only if A and M are relatively prime (i.e. if gcd(A, M) = 1)

Examples: 

Input: A = 3, M = 11
Output: 4
Explanation: Since (4*3) mod 11 = 1, 4 is modulo inverse of 3(under 11).
One might think, 15 also as a valid output as “(15*3) mod 11” 
is also 1, but 15 is not in range {1, 2, … 10}, so not valid.

Input:  A = 10, M = 17
Output: 12
Explamation: Since (10*12) mod 17 = 1, 12 is modulo inverse of 10(under 17).

Naive Approach:  To solve the problem, follow the below idea:

A naive method is to try all numbers from 1 to m. For every number x, check if (A * X) % M is 1

Below is the implementation of the above approach:

C++




// C++ program to find modular
// inverse of A under modulo M
#include <bits/stdc++.h>
using namespace std;
 
// A naive method to find modular
// multiplicative inverse of 'A'
// under modulo 'M'
 
int modInverse(int A, int M)
{
    for (int X = 1; X < M; X++)
        if (((A % M) * (X % M)) % M == 1)
            return X;
}
 
// Driver code
int main()
{
    int A = 3, M = 11;
 
    // Function call
    cout << modInverse(A, M);
    return 0;
}


Java




// Java program to find modular inverse
// of A under modulo M
import java.io.*;
 
class GFG {
 
    // A naive method to find modulor
    // multiplicative inverse of A
    // under modulo M
    static int modInverse(int A, int M)
    {
 
        for (int X = 1; X < M; X++)
            if (((A % M) * (X % M)) % M == 1)
                return X;
        return 1;
    }
 
    // Driver Code
    public static void main(String args[])
    {
        int A = 3, M = 11;
 
        // Function call
        System.out.println(modInverse(A, M));
    }
}
 
/*This code is contributed by Nikita Tiwari.*/


Python3




# Python3 program to find modular
# inverse of A under modulo M
 
# A naive method to find modulor
# multiplicative inverse of A
# under modulo M
 
 
def modInverse(A, M):
 
    for X in range(1, M):
        if (((A % M) * (X % M)) % M == 1):
            return X
    return -1
 
 
# Driver Code
if __name__ == "__main__":
    A = 3
    M = 11
 
    # Function call
    print(modInverse(A, M))
 
# This code is contributed by Nikita Tiwari.


C#




// C# program to find modular inverse
// of A under modulo M
using System;
 
class GFG {
 
    // A naive method to find modulor
    // multiplicative inverse of A
    // under modulo M
    static int modInverse(int A, int M)
    {
 
        for (int X = 1; X < M; X++)
            if (((A % M) * (X % M)) % M == 1)
                return X;
        return 1;
    }
 
    // Driver Code
    public static void Main()
    {
        int A = 3, M = 11;
 
        // Function call
        Console.WriteLine(modInverse(A, M));
    }
}
 
// This code is contributed by anuj_67.


Javascript




<script>
 
// Javascript program to find modular
// inverse of a under modulo m
 
// A naive method to find modulor
// multiplicative inverse of
// 'a' under modulo 'm'
function modInverse(a, m)
{
    for(let x = 1; x < m; x++)
        if (((a % m) * (x % m)) % m == 1)
            return x;
}
 
// Driver Code
let a = 3;
let m = 11;
 
// Function call
document.write(modInverse(a, m));
 
// This code is contributed by _saurabh_jaiswal.
 
</script>


PHP




<?php
// PHP program to find modular
// inverse of A under modulo M
 
// A naive method to find modulor
// multiplicative inverse of
// A under modulo M
function modInverse( $A, $M)
{
     
    for ($X = 1; $X < $M; $X++)
        if ((($A%$M) * ($X%$M)) % $M == 1)
            return $X;
}
 
// Driver Code
$A = 3;
$M = 11;
 
// Function call
echo modInverse($A, $M);
 
// This code is contributed by anuj_67.
?>


Output

4

Time Complexity: O(M)
Auxiliary Space: O(1)

Similar Reads

Modular multiplicative inverse when M and A are coprime or gcd(A, M)=1:

...

Modular multiplicative inverse when M is prime:

...